Here comes Big Biopower - What it means for Solar & Wind

September 26 2008 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: General   Rating: 8 Hot

We have ‘Big Oil’, so why not ‘Big Biopower’? (And what does it mean for the solar and wind industry?)

Enter Adage (Chadds Ford, PA) a new joint venture biomass development company formed by nuclear energy vendor AREVA (Bethesda, MD) and electrical utility giant Duke Energy, N.C).

ADAGE will be focused on enabling green biopower energy solutions for the US electricity market tapping waste organic materials like wood chips.

BioPower via Waste to Energy?
Bio energy means many things. While most people think of biofuels from corn, this first generation ‘food crop’ source is not the future of bioenergy. (Don’t get distracted by corn ethanol, bio energy potential is vast!)

Real bio energy growth is likely to come from a combination of plant, algae/bacteria and organic waste sources. A leading ‘non-food’ crop resource is Jatropha, but biofuels can also use enzyme supported systems (cellulosic ethanol) or applying chemistry to create hydrogen rich fuels from waste streams.


Bio energy also uses the higher conversion efficiencies of carbon-eating algae to produce biodiesel, and hydrogen-breathing bacteria for electricity.

Adage’s bio source will be organic waste materials like wood chips and other combustible organic matter. It is a large utility scale waste to energy strategy. The company has plans to develop standards for a 50 megawatt (MW) plant that would feed directly into the US electrical grid. This biopower plant would deliver electricity to 40,000 households and avoid 400,000 tons of carbon dioxide (CO2) emissions per year compared to coal.’

Organic material supplies would come from regional industrial suppliers with excess wood wastes and ‘forestry operations within about a 50-mile radius around the biomass power plant.

So Adage will develop projects in regions with well established industries that can deliver steady streams of organic waste. [And it is important to note that waste to energy strategies have an obvious limitation based on amount of waste available.)

‘Combustion() based BioPower, but Carbon Neutral
Today, electricity is produced by burning things. The energy released from burning off carbon-hydrogen bonds leads to steam that spins turbines to produce electricity. Adage’s form of ‘waste to energy’ is in essence – carbon neutral.

Adage will be burning (I am verifying this claim. See comment section) organic material (trees / plant material) resulting in CO2 emissions, but that carbon is recaptured by trees and plant life. (Assuming more trees, crops and plant life are replaced!)

It might sound sketchy, but the burning of biomass waste is much better than releasing the massive amount of energy of coal that have been locked away in ground deposits for millions of years. So it is a step forward!

Despite its carbon neutral approach, Big BioPower might be a hard pill to swallow for eco-purists which favors non combustion power generation of solar and wind. The prospect of ‘Big BioPower’ could bring an unexpected twist for solar and wind producers looking to tap ‘renewable energy’ credits for state utilities.

More on Big Biopower’s opportunities and challenges ahead for solar and wind

Continue Reading

PetroSun designs algae-to-biofuel systems for catfish farms

December 01 2008 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2012   Rating: 6 Hot

Algae FarmAlgae and bacteria can be used to capture energy from carbon-rich waste streams from coal plants, agricultural farms, food processing facilities, wastewater treatment plants and - yes, catfish farms.

Arizona-based PetroSun Biofuels (Subsidiary of PetroSun) has announced plans to integrate algae systems with catfish farm ponds for commercial algae-to-biofuel operations. PetroSun Biofuels is quickly becoming a biofuel startup with global reach.  It already operates an open algae biofuel farm in Texas, has licensed its technology outside of the US, and is working to launch operations in China.

PetroSun BioFuels and Biomass Partners have identified up to 80,000 acres of catfish ponds within the state of Mississippi that hold the potential for commercial algae bioenergy systems.   Based on PetroSun's annual potential production rate of 2,000 gallons per acre, the existing 80,000 acres of ponds would produce 160 million gallons of algal oil annually for conversion to biodiesel. The remaining algae biomass (e.g. fatty acids) could be processed into ethanol, animal feed, fertilizer and other biomaterial products.

PetroSun is working to secure land surface rights and existing farm ponds located in Alabama, Mississippi, Louisiana and Arkansas but has not yet announced dates for planned production facilities.

Continue Reading

[Video] The Takeaway looks inside algae bioeenergy startup Bionavitas

February 03 2009 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2018   Rating: 6 Hot

Algae bioenergy is based on a powerful idea that is still just off the radar of mainstream conversations on the future of energy.  We can 'grow energy' by tapping 'carbon eating' algae that create usable forms of hydrocarbons for fuel or biomaterials.

The idea seems strange and futuristic, but it actually describes our past.  We already tap the power of bioenergy everyday. Coal is ancient plant life, and oil is (likely) ancient microbes that lived in shallow oceans.  Both plants and microbes fuse hydrogen and carbon bonds using the power of sunlight. But algae is a more efficient in that conversion and results in a higher hydrogen to carbon ratio. That means a cleaner burning fuel!

Everytime you turn on the light (via coal power plant) or drive a car you are capturing the energy released from carbon-hydrogen bonds form by ancient biology.  Now energy visionaries are looking at how we can tap the same processes today to 'grow energy' without relying on food crops like corn or soy.

This week The Takeaway has been running Power Trip a series of programs on the future of energy. Earlier this week, Host John Hockenberry visited algae biofuels company Bionavitas in Seattle, WA.

Related posts on The Energy Roadmap.com

Continue Reading

US releases National Biofuels Plan to accelerate next generation bioenergy solutions

October 08 2008 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2012   Rating: 5 Hot

The US Departments of Energy (DOE) and Agriculture (USDA) have released its National Biofuels Action Plan [4.9MB] detailing Federal agency and private partnership efforts to accelerate the development of ‘a sustainable biofuels industry’. While first generation biofuels such as corn ethanol have been under tremendous scrutiny in recent months, the US agencies appear to be positioning themselves to offer measurably sustainable biofuel resources that will rely heavily on next generation resources (e.g. non-food, waste biomass) and biologically driven conversion processes. [Principles outlined in Biofuel Plan Factsheet]

The official word – We have Plan
“Federal leadership can provide the vision for research, industry and citizens to understand how the nation will become less dependent on foreign oil and create strong rural economies,” USDA Secretary Schafer said. “This National Biofuels Action Plan supports the drive for biofuels growth to supply energy that is clean and affordable, and always renewable.”

Translation: We are hedging our bets on the future of bioenergy!
Looking beyond the rhetoric of energy security, and clear tip of the hat to rural agricultural politics and the influence of mainstream agricultural players, target-based plans do secure federal funding streams for next generation bioenergy solutions. And there are significant funds headed towards innovative start up companies that could develop game-changing bio industrial applications. These start ups could ease our reliance on traditional petrochemicals for making fuels, fertilizers and raw materials processing.

But the key takeaway might be that the DOE is hedging R&D investments on traditional chemical biofuel refining processes (traditional catalysts) by also advancing potentially lower cost biological conversion processes (enzymes/algae).

To develop low cost cellulosic biofuels from non-food biomass feedstock, the agency announced $12.3 million contract with bioenergy startup Novoyzme. The company will be contracted to develop enzymes capable of breaking down strong cellular plant walls under its named project DECREASE (Development of a Commercial-Ready Enzyme Application System for Ethanol).

According to Novoyzme, the company has confirmed plans to launch the enzymes required for commercially viable production of ethanol from cellulose by 2010, midway through this contract, with plans to reach an enzyme cost target that is even further reduced by 2012. But there is still rural politics infused as the primary feedstock is expected to be leftover corn biomass waste.

Additional funding announcements include

Continue Reading

Oregon Researchers Use Nano-shells of Algae to Trap Photons and Improve Solar Cell Efficiency

April 19 2009 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: General   Rating: 5 Hot

Oregon Diatom SolarThe Future of Energy will be based on our ability to elegantly control the interactions of light, carbon, hydrogen, oxygen and metals.  And for all our engineering prowress of extracting and blowing up ancient bio-energy reserves (coal/oil), there is still so much to learn about basic energy systems from Mother Nature.

Laying Down Algae Shells for Solar Panels
Researchers from Oregon State University and Portland State University have developed a new way to make “dye-sensitized” solar cells using a 'bottom up' biological assembly processes over traditional silicon chemical engineering.

The teams are working with a type of solar cell that generates energy when 'photons bounce around like they were in a pinball machine, striking these dyes and producing electricity.'

Rather than build the solar cells using traditional technqiues, the team is tapping the outer shells of single-celled algae, known as diatoms, to improve the electrical output. (Diatoms are believed to be the ancient bio-source of petroleum.)

The team placed the algae on a transparent conductive glass surface, and then (removed) the living organic material, leaving behind the tiny skeletons of the diatoms to form a template that is integrated with nanoparticles of titanium dioxide to complete the solar cell design.

Biology's Nanostructured Shells & Bouncing Photons?
“Conventional thin-film, photo-synthesizing dyes also take photons from sunlight and transfer it to titanium dioxide, creating electricity,” said Greg Rorrer, an OSU professor of chemical engineering “But in this system the photons bounce around more inside the pores of the diatom shell, making it more efficient.”

The research team is still not clear how the process works, but 'the tiny holes in diatom shells appear to increase the interaction between photons and the dye to promote the conversion of light to electricity... potentially with a triple output of electricity.' 

According to the team, this is the 'first reported study of using a living organism to controllably fabricate semiconductor TiO2 nanostructures by a bottom-up self-assembly process.'  So, chalk up another early win for advanced bio-energy manufacturing strategies!

 

Continue Reading

'Growing Energy' - TED Talk by Juan Enriquez

September 25 2008 / by Garry Golden / In association with Future Blogger.net
Category: Environment   Year: General   Rating: 4

Bio energy is a powerful concept.

The idea is simple. Tap the power of biology for energy production, energy conversion, energy storage and carbon utilization.

Why biology?
The most common forms of energy (coal and oil) arrived here via ancient biochemical pathways. Coal is ancient biomass likely ferns. Oil is likely ancient micro organisms that lived in shallow seas. In both cases life (biology) used the power of sunlight to re-arrange carbon, hydrogen and oxygen. (Algae and bacteria are better converters compared to plants and also result in higher hydrogen to carbon ratio.)

Today, we use this ancient bio energy to power our world. When we drive our cars we are burning chemical bonds created by algae and bacteria.

So instead of extracting this ancient bioenergy, why not grow it here?

Growing Energy using Algae and Bacteria
Today there are dozens of bio energy startups tapping the power of plants, algae and bacteria to ‘grow energy’.

The most disruptive idea being explored by startups is to channel coal stack carbon dioxide emissions into water filled bags with carbon-eating algae which can re-purpose carbon and hydrogen into fatty acids which can be used to create liquid biofuels.

‘Growing Energy’ Meme Background
One of the turning points of the ‘growing energy’ meme was a talk delivered by Juan Enriquez at the 2007 T.E.D. Conference. This 18 minute talk is a wonderful first step in answering the question – ‘why biology’?


Steve Jurvetson: Biology and Energy are Converging & Accelerating (Part 1)

September 29 2008 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2012   Rating: 4

Steve Jurveston has long been considered one of the most forward looking technology visionaries in Silicon Valley. He is also one of many Silicon Valley investors becoming very interested (and invested) in the convergence of biosciences and the energy industry. Jurveston sits on the board of Craig Venter’s new company Synthetic Genomics which hopes to tap the power of synthetic biology for energy production.

In this 6 minute ZDNET presentation clip from AlwaysOn GoingGreen conference held on September 10-12th, 2008, Jurvetson explains the implications of accelerating changes in biology, genetics, and synthetic biology to the future of energy.

Accelerating changes in biology and cleantech
The future of biology is likely to converge with other industries like energy within the next 10-20 years. Bio energy is very complicated subject with enormous potential to change how we produce biofuels, hydrogen and bio-material feedstocks. But it is also in its early ‘hype’ stages of development and we need framers who can eloquently describe how these changes in biology and genetics might someday change energy.

Fortunately for us – Steve Jurveston is one of those visionaries who can explain this convergence of biosciences and energy.



Video embedded from ZDNET

Patagonia fungus that produces 'diesel' fuels

November 04 2008 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: Beyond   Rating: 4 Hot

A research group led by Montana State University Professor Gary Strobel has found a fungus (Gliocladium roseum) inside a Patagonia rainforest that produces hydrocarbon chains similar to diesel fuel or “myco-diesel”.

Why is this important?
Our world is powered by capturing the energy released from carbon-hydrogen chains from wood, coal, oil and natural gas. This chemical energy was formed by ancient biological processes via plants, algae and bacteria. But what if fungi could do the same thing?

If we expect to move beyond an extraction economy that taps ancient bio energy via coal and petroleum, we need to find substitute sources of energy producing systems. Rather than look at energy conversion via plants (e.g. corn), researchers are looking at more ancient forms of life to find the most efficient metabolic systems involved in energy conversion.

We have featured stories on the push towards cellulosic ethanol and algae biofuel startups, and now we can add fungus to that list of potential bio energy substitutes to traditional hydrocarbons.

When can I put myco-diesel in my vehicle?
There is still a very long way to go before we can develop energy roadmaps and forecasts for fungi derived fuels. For now, smart money is on cellulosic and algae derived biofuels. This is an important discovery, but we have no applied evidence that it could easily scale to produce large amounts of usable forms of liquid fuels at a low cost. But this is an important first step and a significant discovery around the fundamentals of bioenergy!

Continue Reading

Research breakthrough in microbial fuel cell converts waste to energy

November 20 2008 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2018   Rating: 4 Hot

What happened?
Researchers at the University of Minnesota-Twin Cities believe they have found a unique species of bacteria, Geobacter sulfurreducens, that can convert wastewater organic compounds into electricity using a low cost carbon (graphite) electrode.

“Other species of bacteria may produce just as many electrons as they oxidize available fuels, but their cell membranes act like an insulator for electron transport,” said Daniel Bond, a microbiologist at the University of Minnesota-Twin Cities. “With Geobacter, it’s the difference between a rickety one-land bridge and a modern 12-lane highway. The electrons pass easily through internal membranes and cell walls and hop onto the electrode.” As each “hop” requires them to travel about 10 Angstroms.

Geobacter has proteins that guide electrons all the way to the electrode. “This makes Geobacter unique in comparison to other bacteria,” Bond said. “Because of the distances involved, we know that multiple proteins are involved, which adds to the complexity and why we can’t just clone a gene into E. coli to do this.”

Why is this important to the future of energy?
While traditional batteries and fuel cells often use expensive precious-metal catalysts (e.g. platinum) to strip electrons off the fuel source to generate electricity, microbial fuel cells use biological agents to do the heavy work.

A microbial fuel cell based on Geobacter would require only an inexpensive form of carbon (graphite) to help the bacteria transfer electrons onto the surface of electrodes. This novel design of microbial fuel cells could be scaled to efficiently convert waste organic matter (e.g. sewage, food waste) to electricity.

What to watch

Continue Reading

USDA, DOE Announce $25 Million for Advanced Bioenergy Research (i.e. Beyond Corn)

January 30 2009 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2020   Rating: 4 Hot

next generation biofuels

There is an echo chamber of cynicism around the topic of corn ethanol.  Unless you are a corn farmer or part of the ethanol lobby, evergyone agrees that this is not a sustainable path. 

So the world is moving forward. The conversation is now focused on next generation bioenergy solutions that avoid the problems of 'crop' based biofuels.

The US government has placed a ceiling on future growth for corn derived fuels, and now the Obama administration has announced up to $25 million in funding for research and development of technologies and processes to produce biofuels, bioenergy, and high-value biobased products.

The money will fund projects related to: Feedstocks development; Biofuels and biobased products development; and Biofuels development analysis.

What is happening?  'Biology' is coming of age as a driver of industrial and energy applications.

Why 'Bioenergy' has more to do with Bio-Industrialism than Farming

Continue Reading

Forget about algae? Wisconsin researchers turn raw biomass into biofuels via two step chemistry

February 11 2009 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2013   Rating: 4 Hot

ChemistFlickrBioenergy visionaries with algae and bacteria aren't the only players in town trying to corner the market on the 'future of biofuels'.  We cannot forget the Chemists.

Biofuels are expanding along two paths- one is based on chemical engineering, the other on biological processes.

Chemistry vs Biology
We can create biofuels by applying chemical engineering processes (e.g. ethanol via fermentation, or biodiesel via transesterfication) with high reliability and scale, but usually at a high cost.  

Or we can let Mother Nature do the work. Biology taps the power of algae and bacteria that contain special enzymes that reorganize molecules into a format that can be used to make biofuels, or converted into electricity via a fuel cell.

Biology could offer lower cost and turn carbon emissions into a feedstock, but first we must overcome challenges of scaling up volume production, and the unpredictable nature of biomolecular systems.

Wisconsin Focuses on Path of Chemistry
For now, chemical conversion is the more immediate opportunity and fits within the current paradigm of processing energy and materials feedstocks.  And engineers are working to overcome the challenges to reduce the number of steps, and facilitate reactions at a lower temperature with non-toxic, abundant resources.

Now scientists at the University of Wisconsin-Madison have developed a two-step method to convert cellulose into a biofuel called DMF.  Professor Ronald Raines and graduate student Joseph Binder highlight the two step process:  First, they convert the cellulose of untreated biomass into the "platform" chemical 5-hydroxymethylfurfural (HMF) which is used in 'a variety of valuable commodity chemicals'. Generally HMF is made using processed glucose or fructose rather than raw biomass.

Step Two: Creating a New Biofuel with Gasoline Qualities

Continue Reading

IEA Warns: Oil 'Supply Crunch' Will Return

February 16 2009 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: 2011   Rating: 4 Hot

Burning Man

Oil Supply Crunch ahead
The world's leading authority on oil markets is warning that these days of cheap ($40 barrel) oil are just a mirage and that the world is likely to experience 'an oil supply crunch' next year (2010) as markets begin to recover.

Reuters reports on IEA Executive Director Nobuo Tanaka describing a potential short-term reality: "Currently the demand is very low due to the very bad economic situation, but when the economy starts growing, recovery comes again in 2010 and then onward, we may have another serious supply crunch if capital investment is not coming."

The Real Problem with Oil - No Alternative
Oil's biggest problem is 'lack of substiitutability'.  There is no other 'reserve' of liquid fuel that can compare to the energy locked up inside the hydrogen-carbon bonds of oil.

If we talk about using oil as gasoline for the transportation sector there is no commercially viable alternative that offers the same volume and performance.  Even 'Next Generation' biofuels from algae and cellulose-eating bacteria cannot provide the scale to fill even a tiny gap in global oil production vs demand.

People who push 'solar', 'wind' or 'nuclear' (which produce electricity) as an 'alternative to oil' simply do not understand the combustion engine. You cannot put electricity inside your gas tank.  We must either produce massive amounts of liquid fuel substitutes, or take a bolder step to kill the combustion engine.

Is the world ready to confront the real problem? The Combustion Engine

Continue Reading