Japanese Researchers Advance High Surface Area MOFs For Biofuels and Solid Hydrogen Storage

March 01 2009 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: General   Rating: 2

MOFs RikkenResearchers from RIKEN’s Harima Institute have designed a unique version of a high surface area material known as Metal Organic Frameworks (MOFs).  Their version of these ‘lego-like’ scaffolding have two different size pores useful in manipulating metals to interact with carbon, hydrogen and oxygen molecules.

The larger pores could be helpful in separating alcohol gases from water in creation of fuels from biomass, while the smaller pores can be used to store hydrogen as a solid.

We have featured a number of stories (below) on MOFs, and believe they are on a solid development path towards commercialization in a wide range of energy applications. 

First synthesized in the mid 1990s, MOFs have the highest surface area of any known material.  They can be used for 'separating (carbon-hydrogen rich) gases, acting as catalysts to speed up chemical reactions, and for storing gases as solids.' 

The future of energy will be based on our mastering of interactions between basic units like light, molecules, and metals. MOFs provide human beings with a platform of unprecedented surface area that increase our ability to manipulate these interactions.  They might play a critical role in enabling a new era of energy systems that go beyond 'extraction' of hydrocarbon reserves.

Why Science, Not Consumerism, is Needed to Move beyond the ‘Extraction’ Era of Energy

Continue Reading

How Many Hydrogen Or Carbon Atoms Can You Fit On A Football Field? How Many Football Fields Can You Fit In Your Pocket?

March 13 2009 / by Garry Golden / In association with Future Blogger.net
Category: Energy   Year: General   Rating: 2

MOF Football FieldHuman beings have mastered the brute-force era of ‘energy by engineering’ where we’ve pulled stored energy from the Earth locked up as coal, oil and natural gas.  But we are just beginning to achieve a more Zen-like ability to manipulate molecules that we harness and store ourselves.

Energy is about the interaction of molecules.  And the way human beings can create cleaner energy interactions is by designing materials at the nanoscale to achieve unprecedented performance.  Surface area is a key piece to this puzzle.

One Gram = One Football Field = How many molecules?
Now, imagine holding a material in your hand that was made up of tiny nano-sized ‘cages’ that could hold gas molecules like hydrogen and carbon.  Now imagine a gram of this material having the surface area of a football field.  How many hydrogen or carbon molecules could you fit in that space?   We don't yet know what practical storage systems might yield. This is a big question for energy researchers.

A research team led by University of Michigan’s Adam Matzger has created a novel nanoporous material known as UMCM-2 (University of Michigan Crystalline Material-2) that could claim the world record for surface area with more than 5,000 square meters per gram.

"Surface area is an important, intrinsic property that can affect the behavior of materials in processes ranging from the activity of catalysts to water detoxification to purification of hydrocarbons," Matzger said.   That means we can design high surface area materials to scrub carbon leaving cleaner hydrogen bonds, or desalinate water using less energy. 

Until recently the threshold for surface area was 3,000 square meters per gram. Then in 2004, a U-M team that included Matzger reported development of a material known as MOF-177 (metal-organic frameworks) that has the surface area of a football field.

"Pushing beyond that point has been difficult," Matzger said, but apparently not impossible using a new method of coordination copolymerization.  If it's hard to get your head around, just think: Building Legos wth Molecules! That's a Big Idea!

Related posts on The Energy Roadmap.com

 

Continue Reading